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Abstract
A theoretical model is suggested which describes the generation of prismatic
misfit dislocation loops surrounding cylindrical quantum dots. These
dislocation loops partly accommodate misfit stresses in cylindrical quantum
dots embedded in a film deposited onto a substrate. In the framework
of the model, the ranges of geometric parameters (misfit parameter f ,
quantum dot radius a and its height H ) are calculated at which the
generation of misfit dislocation loops surrounding cylindrical quantum dots is
energetically favourable. The exemplary cases of dislocation loop generation
in Inx Ga1−x N/GaN and GaN/AlN systems are briefly discussed.

1. Introduction

Semiconductor quantum dots represent the subject of intense fundamental and applied research
efforts motivated by wide perspectives of their application in optoelectronics, see, e.g. [1–3].
The functional properties of quantum dots are highly sensitive to their spatial arrangement,
shape and structure. Therefore, there are certain demands on fabrication of quantum dot
ensembles to be exploited in nanodevices. One of the prospective methods to produce spatially
ordered ensembles of quantum dots which are uniform in both size and shape, highly desirable
for applications, is the fabrication through a selective growth process that consists of deposition
of a thin layer on a substrate and its subsequent patterning with sub-micron holes [4, 5].
Quantum dots are then selectively grown inside the holes using a variety of techniques, such as
metal–organic vapour deposition and molecular beam epitaxy. In doing so, cylindrical quantum
dots (figure 1) are fabricated which commonly have very similar sizes and shapes controlled
by the geometry of the holes in the layer mask [4, 5]. However, in the case under consideration,
the misfit dislocations in cylindrical quantum dots can be formed to accommodate the misfit
stresses (arising in both the substrate and the dots due to the misfit between their crystal
lattices), as with conventional pyramidal and dome-like quantum dots [1, 6–10] fabricated
by self-assembly based techniques. The generation of misfit dislocations leads to a dramatic
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Figure 1. Cylindrical quantum dots embedded into a film deposited onto a substrate.

degradation of the functional optoelectronic properties of quantum dots [1]. In this context,
it is very important to identify the critical geometric parameters of cylindrical quantum dots,
at which the generation of misfit dislocations is energetically favourable. In analysis of misfit
dislocations in pyramidal and dome-like quantum dots and conventional continuous films,
straight misfit dislocations and their configurations are commonly considered; see, e.g., [6–
15]. However, with the geometry of cylindrical quantum dots, it is natural to think that misfit
dislocation loops can be intensively formed which surround these cylindrical quantum dots.
Recently, the conditions for the formation of misfit dislocation loops around spherical quantum
dots in a matrix [16] and in a film on a substrate [17] have been theoretically analysed. The
main aim of this paper is to suggest a theoretical model which describes the generation of
prismatic misfit dislocation loops surrounding cylindrical quantum dots. The focus will be
placed on calculations of the ranges of geometric parameters at which the generation of misfit
dislocation loops in cylindrical quantum dots is energetically favourable.

2. Model

Let us consider a cylindrical quantum dot embedded into a film of thickness t deposited onto
a substrate (figure 2). The central axis of the cylindrical quantum dot is perpendicular to
the film free surface, and the upper surface of the dot enters the film free surface (figure 2).
We consider the situation where the atomic bonding at the interphase boundary between the
adjacent film and quantum dot lattices is strong. In the framework of this model approximation,
in the following, we consider a cylindrical second-phase inclusion with the radius a and height
H � t in a film on a semi-infinite substrate. The central axis of the cylindrical inclusion is
perpendicular to the film free surface, and the upper surface of the inclusion enters the film
free surface (figure 2). The substrate, film and inclusion are assumed to be elastically isotropic
solids having the same values of the shear modulus G and the same values of the Poisson ratio
ν. The difference between the crystal lattice parameters, as and af , of the matrix and film is
characterized by the misfit f̃ = (as − af)/af , while the difference between the crystal lattice
parameters, af and ai, of the film and inclusion is characterized by the misfit f = (af − ai)/ai.
It is important to note that the parameter f defines here the misfit between the inclusion and
the film but not between the inclusion and the substrate.

The elastic misfit strains and stresses occur in the matrix, film and inclusion due to the
misfits f and f̃ at the interphase boundaries. These strains and stresses provide the coherent
matching of the crystal lattices of the adjacent phases. In certain ranges of parameters that
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Figure 2. Misfit dislocation loop around a cylindrical quantum dot situated within a film on a
substrate. The loop is shown as a solid circle.

characterize the matrix–film–inclusion composite system, the misfit stresses are partly relaxed
through the generation of misfit defects at the interphase boundaries. In this paper, we consider
the defect configuration which is typical for cylindrical solids and provides effective relaxation
of the misfit stresses. It is a prismatic misfit dislocation loop surrounding the cylindrical
quantum dot (figure 2). Such a misfit dislocation loop can be generated at the film free surface
and then move (glide) towards the cylinder bottom where the loop provides the most effective
relaxation of the misfit stresses.

3. Energy characteristics of misfit dislocation loop

In order to reveal the conditions for the energetically favourable formation of a misfit dislocation
loop surrounding a cylindrical quantum dot (figure 2), let us introduce the cylindrical coordinate
system (r , θ , z) as shown in figure 2. In this coordinate system, the line of the dislocation loop
has the coordinates (r = a, z = H ), and the Burgers vector b of the dislocation loop is written
as bzez .

The energy change related to the formation of the misfit dislocation loop is given as
�W = W l + W l− f + W l− f̃ + W c. Here W l is the proper elastic energy of the misfit dislocation
loop, W l− f and W l− f̃ are the energies of the interaction between the dislocation loop and the
stresses created due to the misfits f and f̃ , respectively, and W c is the dislocation core energy.
The formation of a misfit dislocation loop surrounding the cylindrical quantum dot shown in
figure 2 is energetically favourable, if the characteristic energy change is negative, that is,

�W = W l + W l− f + W l− f̃ + W c < 0. (1)

Let us consider the terms figuring on the right-hand side of formula (1). The proper elastic
energy W l of the dislocation loop can be calculated with the help of formulas (9), (12) and
(13) given in paper [18]. In doing so, we have W l = Gb2a Q/[2(1−ν)]. Here b is the Burgers
vector magnitude of the dislocation loop and

Q = ln
8a

r0
− 2 +

k

2

[
(k2 − 3)K (k) − (2k2 − 3)E(k)

]
, (2)

where r0 is the dislocation core radius, k = (ξ2
0 + 1)−1/2, ξ0 = H/a, while K (k) =∫ π/2

0 (1 − sin2 ϕ)−1/2 dϕ and E(k) = ∫ π/2
0 (1 − sin2 ϕ)1/2 dϕ are the complete elliptic integrals

of the first and second kind, respectively.
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The energy W l− f of the interaction between the misfit dislocation loop and misfit stresses
created by the quantum dot is calculated with the help of the following general formula [19]:

W l− f = f
∫ 2π

0
dθ

∫ a

0
r dr

∫ H

0
dz (σ l

rr + σ l
θθ + σ l

zz), (3)

where σ l
rr , σ l

θθ and σ l
zz are the stress tensor components of the misfit dislocation loop shown in

figure 2. The stress field of such a loop has been calculated in papers [18, 20]. However, the
formulas given in these papers contain misprints. After revision, we have the correct versions
of these formulas for the non-zero components of the dislocation loop stress field (in units of
Gbz/[2(1 − ν)a]) to be as follows:

σ l
rr = −J1(1, 0; 1) +

1 − 2ν

ρ
J1(1, 1; 0) + |ξ − ξ0|

(
J1(1, 0; 2) − J1(1, 1; 1)

ρ

)
+ J2(1, 0; 1)

− (ξ − 3ξ0)J2(1, 0; 2) +
1

ρ
[(2ν − 1)J2(1, 1; 0)

+ (ξ − (3 − 4ν)ξ0)J2(1, 1; 1)] − 2ξ0ξ

(
J2(1, 0; 3) − J2(1, 1; 2)

ρ

)
, (4)

σ l
θθ = −2ν J1(1, 0; 1) − 1 − 2ν

ρ
J1(1, 1; 0) + |ξ − ξ0| J1(1, 1; 1)

ρ
+ 2ν J2(1, 0; 1)

+ 4νξ0 J2(1, 0; 2) − 1

ρ
[(2ν − 1)J2(1, 1; 0) + (ξ − (3 − 4ν)ξ0)J2(1, 1; 1)]

− 2ξ0ξ
J2(1, 1; 2)

ρ
, (5)

σ l
zz = −J1(1, 0; 1) − |ξ − ξ0|J1(1, 0; 2) + J2(1, 0; 1) + (ξ + ξ0)J2(1, 0; 2) + 2ξ0ξ J2(1, 0; 3),

(6)

σrz = −(ξ − ξ0)J1(1, 1; 2) + (ξ − ξ0)J2(1, 1; 2) + 2ξ0ξ J2(1, 1; 3). (7)

Here ρ = r/a, ξ = z/a, J1,2(m, n; p) = ∫ ∞
0 Jm(t)Jn(ρt)e−|ξ∓ξ0 |t t p dt are the Lipschitz–

Hankel integrals [21]. The stress tensor components given by the expressions (4)–(7) obey
both the equilibrium equations and the boundary conditions at the free surface z = 0.

With the expressions (4)–(6) substituted into formula (3), after integration in this formula,
we find W l− f = −[8πG(1 + ν)a2bz f/(1 − ν)]M , where

M = 1

32ξ2
0

{
8F(1/2, 1/2; 2; −4/ξ2

0 )ξ2
0 − 4F(1/2, 1/2; 2; −1/ξ2

0 )ξ2
0

− 8F(3/2, 3/2; 3; −4/ξ2
0 ) + F(3/2, 3/2; 3; −1/ξ2

0 )
}
, (8)

F(α, β; γ ; x) is the hypergeometric series given by definition as follows:

F(α, β; γ ; x) = �(γ )

�(α)�(β)

∞∑
k=0

�(α + k)�(β + k)

�(γ + k)

xk

k!
. (9)

Here �(t) is the gamma-function.
The energy W l− f̃ of the interaction between the dislocation loop and the misfit stresses

σ
f̃

i j acting within the film and quantum dot due to the misfit f̃ is given as [19]

W l− f̃ = −
∫

V
β∗l

i j σ
f̃

i j dV ′, (10)

where i, j = r, θ, z, β∗l
i j is the plastic distortion induced by the dislocation loop, and integration

is performed over the entire volume V of the matrix–film–inclusion composite. In formula (10),
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the summation over the repeated indices is carried out. In the situation under consideration

(figure 2), there are only the following non-zero components of the misfit stress tensor σ
f̃

i j :

σ f̃
rr = σ

f̃
θθ = 2G(1 + ν) f̃

1 − ν
(t − z), (11)

where (x) is the Heavyside function, equal to 1 for x > 0, and to 0 for x < 0. At the
same time, there is only the following non-zero component of the plastic distortion tensor β∗l

i j
created by the dislocation loop [19]:

β∗l
zz = bz(a − r)δ(z − H ), (12)

where δ(z − H ) is the Dirac delta-function. The substitution of the expressions for σ
f̃

i j and

β∗l
i j into formula (10) yields W l− f̃ = 0. This means that the examined dislocation loop does

not interact with the misfit stresses σ
f̃

i j . As a corollary, the conditions for the dislocation loop

generation do not depend on the value of the misfit f̃ .
The dislocation core energy W c figuring in inequality (1) is given by the standard

approximate formula [22]: W c ≈ Gb2l/[4π(1 − ν)]. Here l = 2πa is the length of the
dislocation loop.

4. Criterion for energetically favourable formation of misfit dislocation loop

Substitution of the expressions for W l , W l− f , W l− f̃ and W c into inequality (1) yields the
following criterion for the energetically favourable formation of the misfit dislocation loop
surrounding the cylindrical quantum dot (figure 2): | f | > fc, where

fc = (Q + 1)b

16π(1 + ν)aM
. (13)

The parameter fc figuring on the left-hand side of formula (13) represents the critical misfit for
the energetically favourable formation of the misfit dislocation loop with the Burgers vector
projection (on the z-axis) being either bz = b (if f > 0) or bz = −b (if f < 0). The critical
misfit fc, given by (13), is a function of two variables, a/b and H/b (see figure 3).

The dependences of the critical misfit fc on the dimensionless quantum dot radius a/b
are presented in figure 3(a), for ν = 0.3, r0 = b and various values of the quantum dot height
H . As follows from figure 3(a), for any finite value of H , each of the dependences fc(a/b)

has a sole minimum at a ≈ H/2. If | f | is lower than the minimum value of fc(a/b) at given
value of H , the formation of the misfit dislocation loop is energetically unfavourable at any
a. If | f | is larger than the minimum value of the function fc(a/b), there is a range of a in
which the formation of the misfit dislocation loop is energetically unfavourable. For a given
value of a and | f | < fc(H → ∞), the generation of misfit dislocation loops is energetically
unfavourable at any height H of a quantum dot.

The dependences fc(H/b), for ν = 0.3, r0 = b and various values of the quantum dot
radius a, are shown in figure 3(b). As follows from figure 3(b), the critical misfit fc decreases
with rising H and saturates in the limit of H → ∞.

The contour map of the critical misfit fc in the coordinate space (a/b, H/b) is presented in
figure 4, for ν = 0.3 and r0 = b. As follows from figures 3 and 4, the critical misfit fc decreases
when the quantum dot height H grows and/or the quantum dot diameter 2a approaches H . In
contrast, when H decreases and/or the dot diameter changes so as to increase the difference
|2a − H |, the critical misfit fc grows, in which case the dislocation loop formation (figure 2)
is hampered. The curves shown in figure 4 have vertical asymptotes a = ac. For a given value
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Figure 3. Dependences of critical misfit fc on (a) non-dimensional radius a/b of quantum dot, for
H/b = 30, 50, 80 and ∞ (curves 1, 2, 3 and 4, respectively) and (b) non-dimensional height H/b
of quantum dot, for a/b = 10, 20 and 50 (curves 1, 2 and 3, respectively). The plots are drawn for
ν = 0.3 and r0 = b. The arrows indicate the minima of curves 1, 2 and 3.

Figure 4. Contour map of critical misfit fc in coordinate space (a/b, H/b). The dashed line shows
the line a = H/2.

of f and a < ac, the generation of misfit dislocation loops is energetically unfavourable at
any height H of a quantum dot. When f is given, ac can be found from curve 4 shown in
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figure 3(a). More precisely, the value a = ac corresponds to the point where this curve and
the horizontal line | f | = fc intersect.

For illustration, let us give values of the critical radius ac (that characterizes the
energetically favourable generation of a misfit dislocation loop surrounding a cylindrical
quantum dot; see figure 2) in several systems interesting for technological applications. For
In0.18Ga0.82N/GaN system, | f | = 0.02. In this case, we have ac ≈ 13 nm at b = 0.5 nm. For
the GaN/AlN system, | f | = 0.027, in which case we find ac ≈ 8.5 nm at b = 0.5 nm.

5. Concluding remarks

Thus, in this paper the new type of misfit defect configuration—a prismatic misfit dislocation
loop surrounding a cylindrical quantum dot (figure 2)—has been theoretically examined.
According to our theoretical analysis, the generation of misfit dislocation loops in composites
with cylindrical quantum dots is crucially affected by their geometric parameters, such as
misfit parameter f , quantum dot radius a and its height H . There are certain ranges of these
parameters at which the generation of misfit dislocation loops surrounding cylindrical quantum
dots (figure 2) is energetically favourable. In particular, one can distinguish both the critical
misfit fc (given by formula (13)) and critical radius ac that characterize the energetically
favourable formation of misfit dislocation loops. More precisely, the dislocation loop
generation is favourable, if | f | > fc. At the same time, in a composite system characterized by
the misfit parameter f , the generation of misfit dislocation loops is energetically unfavourable
at any height H of a quantum dot, if the quantum dot radius obeys the following inequality:
a < ac. The critical misfit fc grows with a decrease in H and/or such a change of the dot
radius a that leads to an increase in the absolute difference |2a − H |. These basic results of
our theoretical analysis should be definitely taken into consideration in further experimental
and theoretical study of cylindrical quantum dots, because of their fundamental significance
and potential use in technological applications.

Also, notice that the model composite system shown in figure 2 is very similar to
nanocomposite solids consisting of a matrix and carbon nanotubes. Such nanotube-reinforced
composites exhibit the outstanding mechanical properties highly desirable for a wide range of
structural applications; see, e.g., [23–25]. In this context, the theoretical results of our paper
are worth being used in a description of the behaviour of dislocation loops surrounding carbon
nanotubes in advanced nanotube-reinforced composites. This will be the subject of further
investigations of the authors.
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